Metric structures and probabilistic computation
نویسنده
چکیده
Continuous first-order logic is used to apply model-theoretic analysis to analytic structures (e.g. Hilbert spaces, Banach spaces, probability spaces, etc.). Classical computable model theory is used to examine the algorithmic structure of mathematical objects that can be described in classical first-order logic. The present paper shows that probabilistic computation (sometimes called randomized computation) can play an analogous role for structures described in continuous first-order logic. The main result of this paper is an effective completeness theorem, showing that every decidable continuous first-order theory has a probabilistically decidable model. Later sections give examples of the application of this framework to various classes of structures, and to some problems of computational complexity theory.
منابع مشابه
ON INTERRELATIONSHIPS BETWEEN FUZZY METRIC STRUCTURES
Considering the increasing interest in fuzzy theory and possible applications,the concept of fuzzy metric space concept has been introduced by severalauthors from different perspectives. This paper interprets the theory in termsof metrics evaluated on fuzzy numbers and defines a strong Hausdorff topology.We study interrelationships between this theory and other fuzzy theories suchas intuitionis...
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملCoupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications
In this paper, we give some new coupled common fixed point theorems for probabilistic $varphi$-contractions in Menger probabilistic metric spaces. As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...
متن کاملStrong $I^K$-Convergence in Probabilistic Metric Spaces
In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.
متن کاملCommon Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)
In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and the common property (E.A.) in modified intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.
متن کاملExpansion semigroups in probabilistic metric spaces
We present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 412 شماره
صفحات -
تاریخ انتشار 2011